1. Engineering
  2. Mechanical Engineering
  3. the following expression to cartesian notation and prove that curkux...

Question: the following expression to cartesian notation and prove that curkux...

Question details

the following expression to Cartesian notation and prove that curkux v)grad u-gradv+u divv-vdiv u The ed in a straight test section of length L, and cross . The flow is steady and approximately uniform across the test B) A n experiment is being conducted section at every cross-secti axis of the test section according to: 、는 the density at the entrance to the test section and where K is a . Because of viscous, turbulent flow in the test section, there is a where P1 is the density at the entr dimensional constant pressure gradient Cfxy at each location x along the test section, according to: ent in the x-direction that depends upon the local volume flow rate dp dr =-α (0(x))2 where α is a dimensional constant. Derive an expression for the force F needed to restrain the test section from moving in the flow direction. Express this answer in terms of the known parameters Q, , ,, , K, L, α and A 0,
Solution by an expert tutor
Blurred Solution
This question has been solved
Subscribe to see this solution