1. Other
2. Other
3. this is urgent like require answer in couple of hours...

# Question: this is urgent like require answer in couple of hours...

###### Question details

This is urgent like require answer in couple of hours!!!!!!!!!!!!!

Question 3a                                       (3 + 3 = 6 marks)

i)           At a recent election, 30% of voters in a certain electorate gave their first preference to the Greens candidate. If 15 people on the electoral roll for the electorate were randomly selected, find the probability that between 3 and 6 voters inclusive, gave their first preference to the Green candidate.

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

ii)          Based on past experience, it is assumed that the number of flaws per metre in rolls of grade 2 paper follow a Poisson distribution with a mean of one flaws per 20 metres of paper. What is the probability that in a 10-metre       roll there will be at least one flaw?

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

Question 3b                                       (2 + 2 + 3 = 7 marks)

A local shopping centre pays its employees a mean hourly wage of $7.25 with a standard deviation of$0.60. It is known that the hourly wage is normally distributed and paid to the nearest cent.

i).          What is the probability that a randomly selected employee receives an hourly wage of less than $6? ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ii). The highest 1% of employee’s hourly wages exceeds what amount? ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ ________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________ iii) What is the probability that the average hourly wage from a sample of 9 employees exceeds$7.80?

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________

________­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­________________________________________________________________________________