1. Engineering
  2. Mechanical Engineering
  3. using properties of abs find force to yield...

Question: using properties of abs find force to yield...

Question details

Using properties of ABS, find force to yield.

250 250 2.125 1.000 1 .$75- .788 SCALE: 1:2 DR. BY: SHEET NO. 2

Mass properties of Part1 Configuration: Min Materia.l Coordinate system:- default Density 0.037 pounds per cubic inch Mass- 0.471 pounds Volume = 12.782 cubic inches Surface area133.489 square inches Center of mass: inches) X 0.000 Y1.010 z = 3.500 Principal axes of inertia and principal moments of inertia: pounds square inches) Taken at the center of mass Ix ly= (0.000, -1.000, 0.000) Iz= (1.000, 0.000, 0.000) 0.000, 0.000, 1.000) Px = 0 . 334 ру 2.041 Pz 2 . 140 of inertia: poundssquare Lxx = 2.140 Lyx = 0.000 S * Taken at the center of mass and aligned with the output coordinate system Lxy = 0.000 Lyy2.041 Lzy 0.000 Lxz = 0 . 000 Lyz0.000 Lzz = 0 . 334 Lzx = 0.000 Moments of inertia: (poundssquare inches Taken at the output coordinate system 1xx = 8 . 391 Iyx-0.000 1zx = 0.000 Icy 0 . 000 lyy 7.811 lay = 1.666 1xz = 0.000 lyz 1 . 666 Izz 0.815

Mass properties of Partl Configuration: Default/max material Coordinate system: -default - ns ity = 0.037 pounds per cubic inch ss 0.600 pounds Volume = 16.282 cubic inches surface area = 86.690 square inches Center of mass inches) X 0.000 Y = 0.995 z = 3.500 Principal axes of inertia and principal moments of inertia: pounds square inches) aken at the center of mass 1x= (0.000, 0.000, 1.000) ly= (0.000, -1.000, 0.000) Iz= ( 1.000, 0.000, 0.000) Px = 0.412 py = 2.601 ments of inertia: poundssquare inches aken at the center of mass and aligned with the output coordinate system Lxx = 2.711 Lyx = 0.000 Lzx = 0.000 Lxy = 0.000 Lyy = 2.601 Lzy = 0.000 Lxz = 0 . 000 Lyz = 0.000 Lz z = 0.412 ments of inertia: poundssquare inches Taken at the output coordinate system |xy = 0.000 lyy 9.951 Izy 2.089 1xz lyz Izz = 0 . 000 2 . 089 = 1 . 006 1xx = 10 . 655 lyx 0 . 000 1zx = 0.000

Solution by an expert tutor
Blurred Solution
This question has been solved
Subscribe to see this solution